The role of toxin A and toxin B in Clostridium difficile infection

Sarah A. Kuehne1*, Stephen T. Cartman1*, John T. Heap1, Michelle L. Kelly1, Alan Cockayne1 & Nigel P. Minton1

Clostridium difficile infection is the leading cause of healthcare-associated diarrhoea in Europe and North America1,2. During infection, C. difficile produces two key virulence determinants, toxin A and toxin B. Experiments with purified toxins have indicated that toxin A alone is able to evoke the symptoms of C. difficile infection, but toxin B is unable to do so unless it is mixed with toxin A or there is prior damage to the gut mucosa3. However, a recent study indicated that toxin B is essential for C. difficile virulence and that a strain producing toxin A alone was avirulent4. This creates a paradox over the individual importance of toxin A and toxin B. Here we show that isogenic mutants of C. difficile producing either toxin A or toxin B alone can cause fulminant disease in the hamster model of infection. By using a gene knockout system5,6 to inactivate the toxin genes permanently, we found that C. difficile producing either one or both toxins showed cytotoxic activity in vitro that translated directly into virulence in vivo. Furthermore, by constructing the first ever double-mutant strain of C. difficile, in which both toxin genes were inactivated, we were able to completely attenuate virulence. Our findings re-establish the importance of both toxin A and toxin B and highlight the need to continue to consider both toxins in the development of diagnostic tests and effective countermeasures against C. difficile.

Toxin A and toxin B both catalyse the glycosylation, and hence inactivation, of Rho-GTPases: small regulatory proteins of the eukaryotic actin cell cytoskeleton. This leads to disorganization of the cell cytoskeleton and cell death7. The toxin genes tcdA and tcdB are situated on the C. difficile chromosome in a 19.6-kilobase (kb) pathogenicity locus (PaLoc), along with the three accessory genes tcdC, tcdR and tcdE (Fig. 1a). To address the individual importance of toxin A and toxin B, we used the Clostron gene knockout system7 to inactivate the toxin genes of C. difficile. This system inactivates genes by inserting an intron into the protein-encoding DNA sequence of a gene, thus resulting in a truncated and non-functional protein. The intron sequence itself encompasses an erythromycin-resistance determinant that permits selective isolation of mutants. Furthermore, it has been shown experimentally that the insertions are completely stable, meaning that inactivation of a gene is permanent7.

Using the Clostron system, we targeted insertions to tcdA and tcdB at nucleotide positions 1584 and 1511, respectively (Fig. 1a). In both cases, this placed the intron within DNA sequence encoding the toxin catalytic domain. Three separate isogenic mutants of the toxin-A-positive, toxin-B-positive (A+ B+) C. difficile strain 630Δerm were constructed: two ‘single mutants’, with toxin profiles A+B- and A-B-, respectively, and a ‘double mutant’ with toxin profile A-B-. The A+B- double mutant was made from the A-B- single mutant by targeting tcdA with a second intron that carried the chloramphenicol/thiamphenicol-resistance gene catP instead of the usual erythromycin-resistance determinant.

The genotype of each toxin mutant was characterized by polymerase chain reaction (PCR) and DNA sequence analysis to confirm the exact location of each intron insertion made (data not shown). Southern blot analysis of EcoRV-digested genomic DNA samples, using an intron-specific probe, confirmed that the A+B- and A+B- mutants each had a single insertion, whereas the A-B- mutant had a double insertion (Fig. 1b). It is noteworthy that three bands were expected for the A+B- double-mutant strain because the catP gene harbours an EcoRV site. The phenotype of each strain was confirmed by western blot analysis. Use of a toxin-A-specific antibody probe confirmed that the A+B- and A-B- mutants no longer produced toxin A (Fig. 1c). Likewise, use of a toxin-B-specific antibody probe confirmed that the A+B- and A-B- mutants no longer produced toxin B (Fig. 1d).

Subsequently, in vitro cell cytotoxicity assays were carried out using HT29 (human colon carcinoma) cells and Vero (African green monkey kidney) cells. Each of these cell lines is susceptible to both toxin A and toxin B, although HT29 cells are more sensitive to toxin A and Vero cells are more sensitive to toxin B. The action of toxin A and toxin B causes the cells to ‘round’ (that is, lose morphology) and die; a phenomenon that is clearly visible by light microscopy. We incubated

1Clostridia Research Group, Centre for Biomolecular Sciences, School of Molecular Medical Sciences, Nottingham Digestive Diseases Centre, NIHR Biomedical Research Unit, University of Nottingham, Nottingham NG7 2RD, UK.
2*These authors contributed equally to this work.

Figure 1 | Characterization of C. difficile toxin mutants. a, The pathogenicity locus PaLoc of C. difficile 630 showing the intron insertion sites for the toxin mutants. b, Southern blot using an intron-specific probe. The control plasmid (pMTL007C-E2) and the genomic DNA of the four strains was digested with EcoRV, which resulted in a band of approximately 9 kb for the plasmid, 10 kb for the tcdB-mutation (in A+B- and A-B-), just over 3 kb for the tcdA-single mutant (A+B-) and 1.8 and 1.2 kb for the tcdA-mutation in the double mutant, owing to an additional EcoRV site in the catP gene. c, Western blot probing culture supernatants with anti-TcdA antibody (tgcBIOMICS). d, Western blot probing culture supernatants with anti-TcdB antibody (tgcBIOMICS).
cultured cells for 24 h with fourfold dilution series of *C. difficile* culture supernatants. To obtain the most objective data set possible, we determined the end-point titre of each dilution series, rather than implementing a subjective cell-scoring system. End-point titre was defined as the first dilution in a series for which HT29 or Vero cell morphology was indistinguishable from the negative controls (cells that had been incubated with uninoculated *C. difficile* culture medium).

As expected, the A–B– double-toxin mutant did not have any cytotoxic activity towards either HT29 or Vero cells (Fig. 2a, b). Compared to the A+B+ parental strain, the A–B– mutant showed reduced toxicity towards HT29 cells, although the difference was not statistically significant, and a similar degree of toxicity towards Vero cells (Fig. 2a, b). These findings were anticipated given the respective sensitivities of HT29 cells and Vero cells to toxin A and toxin B. However, unexpectedly, when compared to the A+B+ parental strain, the A–B– mutant showed increased toxicity towards HT29 cells, although the difference was not statistically significant, and a similar degree of toxicity towards Vero cells (Fig. 2a, b). We reasoned that this may occur owing to increased expression of toxin A by the A–B– mutant, a phenomenon that has been reported previously. Indeed, quantitative PCR with reverse transcription (qRT–PCR) analysis confirmed that expression of toxin A was been reported previously. Indeed, quantitative PCR with reverse transcription (qRT–PCR) analysis confirmed that expression of toxin A was been reported previously. Indeed, quantitative PCR with reverse transcription (qRT–PCR) analysis confirmed that expression of toxin A was been reported previously. Indeed, quantitative PCR with reverse transcription (qRT–PCR) analysis confirmed that expression of toxin A was been reported previously.

Having fully characterized our *C. difficile* toxin mutants *in vitro*, we tested the virulence of each in the hamster model of infection. Hamsters were each challenged with 100 spores of a single *C. difficile* strain, 5 days after an oral dose of clindamycin (30 mg kg\(^{-1}\)). Each toxin mutant and the A+B+ parental strain were administered to eight hamsters in total. All hamsters became colonized by the *C. difficile* strain administered between 1 and 3 days after challenge, with the exception of one that received the A+B– single toxin mutant (Fig. 3a). Following colonization, hamsters that received the A+B+ parental strain, the A–B+ mutant or the A+B– mutant all developed symptoms of *C. difficile* infection, which resulted in a mean time to death of 1.0 day, 1.3 days and 4.0 days, respectively (Fig. 3b). In contrast, none of the hamsters colonized by the toxin-null A–B– double mutant developed any symptoms of disease during the 14-day experimental period, indicating that this strain is completely attenuated for virulence. Bacteriological and PCR analysis of caecum samples taken from each hamster post mortem confirmed that the only infecting strain of *C. difficile* was, indeed, the strain administered in every case, thus neutralizing antibodies before inoculation onto HT29 and Vero cell monolayers. Importantly, culture supernatants were diluted equivalently such that, for the A+B+ parental strain, only toxin A activity was detected on HT29 cells and only toxin B activity was detected on Vero cells (that is, toxin B activity towards HT29 cells was diluted out completely and toxin A activity towards Vero cells was diluted out completely) (Fig. 2c, d). As expected, the toxin-A-specific antibody neutralized all toxic activity produced by the A+B+ mutant and the toxin-B-specific antibody neutralized all toxic activity produced by the A+B+ mutant (Fig. 2c, d). Interestingly, the increased production of toxin A by the A–B– mutant was clearly visible in this assay, as the cytotoxic activity of this strain towards Vero cells was not diluted out completely, as it was for the A+B– parental strain (Fig. 2d).

![Figure 2](image)

Figure 2 | In vitro cytotoxicity. a, b, Supernatants of the parental strain A+B+ and the three mutants A+B–, A+B+ and A+B– were used in cell culture assays to measure cytotoxicity. HT29 cells (a) and Vero cells (b) were cultured to a flat monolayer before adding *C. difficile* supernatants in fourfold dilutions series. After a 24-h incubation, toxin end-point titres were determined. Data represent the mean ± standard deviation; n = 3. c, d, Toxicin neutralization assays. Appropriate dilutions of supernatants were pre-incubated with a suitable concentration of anti-TcdA or anti-TcdB serum for 1 h at 37 °C and then added to HT29 cells (c) and Vero cells (d), which were evaluated after 24 h. Scale bars, 2 mm.

![Figure 3](image)

Figure 3 | Virulence of *C. difficile* strains in hamsters. a, b, Groups of eight hamsters were challenged with *C. difficile* 630/Aerm (A+B+), or one of the toxin mutant strains, A+B–, A+B+ or A+B–. a, Colonization of Golden Syrian hamsters by each strain is presented as time from inoculation to colonization in days (n = 8). b, Time from colonization to death. The duration of the experiment was set at 14 days (n = 8).
ruling out any possibility of cross-contamination between cages or contamination from the environment (Supplementary Fig. 1).

In conclusion, it is clear that both toxin A and toxin B have an important role in C. difficile infection, because here we have shown that strains that produce either toxin on its own or both toxins together are virulent. It is pertinent to question why we found that an A–B– strain of C. difficile was virulent; a result that is in direct contrast with a similar study published recently. This discrepancy may have arisen owing to inherent differences between the hamsters used in each study. However, perhaps more probable is that there is one or more key differences between the strains of C. difficile studied. Although both strains are erythromycin-sensitive derivatives of strain 630 (refs 10, 11), they were isolated independently through serial sub-culture6–12. Therefore, either strain could have acquired one or more secondary mutations, which may affect the action of either one or both of the toxins. However, it is notable that our findings accord with those of the ClosTron system5,6. The retargeted plasmids pMTL007C-E2::Cdi-C7::Cdi–1584s were transferred into strains that produce either toxin on its own or both toxins together.

METHODS SUMMARY

isolates until now. This would suggest that C. difficile is the principal site of pathology in patients infected with C. difficile, it stands to reason that an A–B– strain of C. difficile is virulent in vivo, as it is toxin A that shows the greatest cytotoxicity towards laboratory-cultured HT29 cells. It is important to note that inherent variability exists between the toxins of some C. difficile strains, particularly in the case of toxin B16–18. In practical terms, this means that the toxins from different strains can vary in enzymatic activity (that is, different GTase substrates may be glucosylated) and/or host-cell specificity. Consequently, it is not appropriate to over-interpret our findings and make general conclusions about the toxins produced by all toxigenic strains of C. difficile. Nonetheless, our results clearly demonstrate that a strain of C. difficile producing either toxin A or toxin B alone may be virulent and thus we have re-established the importance of both toxins in C. difficile infection.

It is interesting to note that a number of clinical cases of C. difficile infection have been attributed to naturally occurring A–B– strains20,21, but that there have been no reports of naturally occurring A–B– isolates until now. This would suggest that A–B– strains do not exist, but it may also be an artefact of routine diagnostic testing practices. Either way, our results show that A–B– strains may be virulent and even if they do not exist in nature already, they may yet evolve. Consequently, it is imperative that both toxin A and toxin B continue to be considered in routine diagnostic settings and in the development of effective countermeasures against C. difficile.

METHODOLOGICAL APPROACHES

Mutants were constructed from the parental strain C. difficile 630Δerm ttg using the ClosTron system14. The retargeted plasmids pMTL007C-E2::Cdi-tcdA-1584s, pMTL007C-E2::Cdi-tcdB-1511a and, for the double mutant, pMTL007S-C7::Cdi-tcdA-1584s were transferred into C. difficile via conjugation. The single ClosTron mutants were isolated on erythromycin plates. The double mutant was isolated on thiamphenicol plates. For cytotoxicity assays, the four strains were grown overnight in 5 ml TY (3% w/v bacto-tryptose, 2% w/v yeast extract and 0.1% w/v thiglycolate, adjusted to pH 7.4) under anaerobic conditions as previously described22. The cell densities were standardized before centrifugation and filtration. Supernatants were diluted in a standardized before centrifugation and filtration. Supernatants were diluted in a

Full Methods and any associated references are available in the online version of the paper at www.nature.com/nature.

Received 14 January 2010; accepted 6 August 2010.

Published online 15 September 2010.

Supplementary Information is linked to the online version of the paper at www.nature.com/nature.

Acknowledgements S.A.K., S.T.C., A.C. and N.P.M. acknowledge the financial support of the UK Medical Research Council (G0601176). Support for M.L.K. was provided by the European Union (HEALTH-F3-2008-223585) and for J.T.H. by the Biotechnology and Biological Sciences Research Council (BBSRC) (BB/F003390/1). We thank C. von-Eichel Streiber for supplying the neutralizing antibody sera and Y. Mahida for the Vero cells. We are also grateful to A. Olling and R. Gerhard for methodological advice on western blots.

Author Contributions The study was conceived by N.P.M. and designed by S.A.K., S.T.C. and J.T.H. Construction of mutants and in vitro characterization was carried out by S.A.K. In vivo work was carried out by S.T.C., M.L.K. and A.C. Analysis of data was carried out by S.A.K. and M.L.K., with assistance from S.T.C. and J.T.H. The manuscript was written by S.A.K. and S.T.C. with critical input from all other authors. Funding for the study was sourced by N.P.M. and A.C.

Author Information Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Readers are welcome to comment on the online version of this article at www.nature.com/nature. Correspondence and requests for materials should be addressed to N.P.M. (nigel.minton@nottingham.ac.uk.)
METHODS

Strains and growth conditions. Strains used in this study were Escherichia coli TOP10 (Invitrogen) as a cloning host, E. coli CA434 (ref. 23) as a conjugal donor and C. difficile 630Δerm (ref. 8) and mutants. All strains were stored at −80 °C stocks on arrival and have been maintained as frozen stocks ever since. E. coli cultures were grown on Luria Bertani medium, aerobically, at 37 °C and shaking if liquid unless stated otherwise. C. difficile cultures were grown in supplemented brain heart infusion medium (BHIS)47 or TY75, anaerobically, 37 °C in an anaerobic workstation (D. Whitney). Antibiotics were used at the following concentrations where appropriate: chloramphenicol (25 μg ml−1 or 12.5 μg ml−1), thiamphenicol (15 μg ml−1), spectinomycin (250 μg ml−1 or 750 μg ml−1), erythromycin (2.5 μg ml−1), n-cylosine (250 μg ml−1) and cefoxitin (8 μg ml−1).

Molecular biology techniques. Qiagen mini prep kits were used to purify plasmids. Genomic DNA was obtained by phenol-chloroform extraction. Digests, PCRs and DNA purification were all done according to general protocols26. DNA sequencing was performed by Geneservice.

Construction and characterization of mutants. The C. difficile single-mutant strains A’ B’ and A’ B’ were made using Clostron technology as described previously76. The A’ B’ double-mutant strain was made using a catP-based Clostron using the ‘pseudo-suicide’ vector principle as described elsewhere28. The following retargeted plasmids, pMTL007C-E2-Cdi-tcdA-1584s, pMTL007C-E2-Cdi-tcdB-1511a and, for the double mutant, pMTL007S-C7-Cdi-tcdA-1584s were used. To verify the correct insertions, the primers used for tcdA were: Cdi-tcdA-E2 (5’-TCAATTGACAGAACAAGAAATTTAAATTGTCATGAGGAC-3’) and EBS universal37, and Cdi-tcdR2 (5’-TACCCCATTGTCTTCAGAA-3’) and ErmRAM-R (5’-ACGCGTGGACCTGATAATTTTCTCCTCCG-3’); and for tcdB they were: Cdi-tcdB-F1 (5’-TGATAGTATAATGCTCAGAAGCTAATGCGATA-3’) and ErmRAM-R, and Cdi-tcdB-R1 (5’-CTTGTAGTCTCAATAGCCATAACATGGTCAGAAGATCCACCAGGAAATTTGTCATGAGGAC-3’) and EBS universal.

Southern blotting. Mutants were verified by Southern blot using an intron-specific probe. Two micrograms of genomic DNA were digested with EcoRV (NEB) overnight. The blot was carried out using a DIG high prime labelling and detection kit (Roche) according to the manufacturer’s instructions.

Western blotting. Supernatants from 96-h cultures, grown anaerobically in TY, were concentrated by centrifugation with chloroform-methanol precipitation. Proteins were standardized and run on Tricine gels 10–20% (Invitrogen) and transferred onto nitrocellulose membrane. The membranes were blocked with milk powder and then incubated with mouse monoclonal anti-TcdA antibody TTC8 and mouse monoclonal anti-TcdB antibody 2CV (tgcBIOMICS) respectively, followed by protein A conjugated with horseradish peroxidase (protein A–HRP) (Sigma). The ECL western blot detection kit from Amersham was used according to the manufacturer’s instructions.

Cell toxicity assays. The four strains were grown overnight in 5 ml TY under anaerobic conditions as previously described76, then the cell density was standardized, the cells centrifuged and supernatants filtered. Supernatants were diluted in a fourfold series and 20 μl of dilutions were added onto monolayers of Vero and HT29 cells preincubated in 96-well plates for 48 h (at 37 °C, 5% CO2). Cytotoxicity was recorded after 24 h. For the neutralization assay, appropriate dilutions of supernatants were pre-incubated with a suitable concentration of anti-TcdA or anti-TcdB serum (polyclonal, tgcBIOMICS) for 1 h at 37 °C. These were then added to Vero and HT29 cells, which were evaluated after 24 h.

Vero and HT29 cells were grown in DMEM or McCoy’s 5A, respectively, with 10% v/v fetal calf serum and 1% v/v penicillin-streptomycin at 37 °C, 5% CO2 until confluent. Cells were detached using trypsin and seeded into 96-well plates at a density of approximately 2 × 104 cells ml−1. All assays were carried out in triplicate. GraphPad Prism was used for statistical analysis. Significant differences were assessed using one-way ANOVA tests.

qRT–PCR. The qRT–PCR was carried out as described previously6.

Hamster infection model. We used a block design with final group sizes of eight animals. Female Golden Syrian hamsters (100–130 g) were housed singly in individually ventilated cages. Each hamster was dosed with clindamycin (30 mg kg−1) 5 days before being infected orally with 100 spores each. Hamsters were monitored for signs of infection and killed when the end point was met. The hamsters were handled individually in a microbiological safety cabinet. In line with UK Home Office requirements to reduce animal suffering, an alternative to death was used as the end point. Animals were monitored 3–4 times per day following infection and were assessed for several parameters including presence and severity of diarrhoea, weight loss, level of activity, stale coat, sunken eyes, hunched posture and response to stimulus. A scoring system based on severity of changes observed (ranging from 0–3 for each parameter) was used to quantify changes in the condition of the animals, which were euthanized when a pre-determined cumulative value was reached.

Faecal pellets were collected daily and plated to determine the presence of C. difficile. Caecum samples from each hamster were homogenized, plated and C. difficile counts obtained. PCR was performed to determine the genotype of each strain recovered from hamsters. Faecal and caecum samples were plated on fracture agar (C. difficile agar base, Oxoid) with cycloserine, colistin, tetracycline and amphotericin to select for C. difficile. The following primer sets were used to authenticate the various strain genotypes: oligonucleotides 3800 and 10050 (ref. 8) to confirm the cells were derived from C. difficile 630Δerm, oligonucleotide primers Cdi-tcdA-F2 (5’-TCAATTGACAGAACAAGAAATTTAAATTGTCATGAGGAC-3’) and Cdi-tcdR2 (5’-CTTGTAGTCTCAATAGCCATAACATGGTCAGAAGATCCACCAC-3’) and EBS universal.

Office requirements to reduce animal suffering, an alternative to death was used as the end point. Animals were monitored 3–4 times per day following infection and were assessed for several parameters including presence and severity of diarrhoea, weight loss, level of activity, stale coat, sunken eyes, hunched posture and response to stimulus. A scoring system based on severity of changes observed (ranging from 0–3 for each parameter) was used to quantify changes in the condition of the animals, which were euthanized when a pre-determined cumulative value was reached.