A Bacterial Toxin Inhibits DNA Replication Elongation through a Direct Interaction with the β Sliding Clamp

Christopher D. Aakre,¹ Tuyen N. Phung,¹ David Huang,¹,² and Michael T. Laub¹,²,*

¹Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
²Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
*Correspondence: laub@mit.edu
http://dx.doi.org/10.1016/j.molcel.2013.10.014

SUMMARY

Toxin-antitoxin (TA) systems are ubiquitous on bacterial chromosomes, yet the mechanisms regulating their activity and the molecular targets of toxins remain incompletely defined. Here, we identify SocAB, an atypical TA system in Caulobacter crescentus. Unlike canonical TA systems, the toxin SocB is unstable and constitutively degraded by the protease ClpXP; this degradation requires the antitoxin, SocA, as a proteolytic adaptor. We find that the toxin, SocB, blocks replication elongation through an interaction with the sliding clamp, driving replication fork collapse. Mutations that suppress SocB toxicity map to either the hydrophobic cleft on the clamp that binds DNA polymerase III or a clamp-binding motif in SocB. Our findings suggest that SocB disrupts replication by outcompeting other clamp-binding proteins. Collectively, our results expand the diversity of mechanisms employed by TA systems to regulate toxin activity and inhibit bacterial growth, and they suggest that inhibiting clamp function may be a generalizable antibacterial strategy.

INTRODUCTION

Toxin-antitoxin (TA) systems are genetic modules that are widely present on plasmids and bacterial chromosomes, with some species encoding more than 50 TA pairs (Pandey and Gerdes, 2005). Each TA system is typically comprised of a toxin and its cognate antitoxin that are encoded together in an operon; normally, both the toxin and antitoxin are synthesized and form a stable, nontoxic complex. However, under stressful conditions, the more labile antitoxin can be degraded, freeing the stable toxin to inhibit bacterial growth (Wang et al., 2011). TA systems target but is surprisingly not targeted by any known TA systems or antibiotics in clinical use (Robinson et al., 2012). Bacterial DNA replication is catalyzed by a multicomponent complex known as DNA polymerase III (Pol III). The Pol III core (subunit composition ε-δ-ε) is weakly processive on its own and can only incorporate one to ten nucleotides per binding event (Johnson and O’Donnell, 2005). To increase its processivity, Pol III core associates with the β sliding clamp, DnaN, a ring-shaped protein that encircles DNA topologically. Binding to DnaN increases the processivity of Pol III over three orders of magnitude (Johnson and O’Donnell, 2005; Maki and Komberg, 1988). In E. coli, DnaN also associates with DNA Pols I, II, IV, and V (Indiani et al., 2005), the mismatch repair proteins MutS and MutL (Lopez de Saro et al., 2006), and the replication regulator Hda (Kurz et al., 2004). The interaction of these proteins with DnaN is required for a number of processes, including translesion synthesis (Lenne-Samuel et al., 2002) and mismatch repair (Lenhart et al., 2013). These clamp-binding proteins contain variants of a short peptide motif, QL[SD]LF, that mediates binding to a conserved hydrophobic cleft on DnaN (Dairymlpe et al., 2001). DnaN thus forms a central hub for DNA replication and repair in bacteria.

Here, we identify an atypical TA system in Caulobacter crescentus, SocAB. We find that the toxin SocB is normally
Molecular Cell
A Bacterial Toxin Inhibits Replication Elongation

Figure 1. Mutations in the Toxin-Encoding Gene socB Bypass clpXP Essentiality
(A) Schematic represents transposon insertions in socB (CCNA_03629) that suppressed the essentiality of clpP.
(B) Growth of clpX and clpP depletion strains in socB+ and ΔsocB backgrounds is shown. Five-fold serial dilutions of the indicated strains were spotted onto media ± IPTG.
(C) Kinetics of ClpX depletion is presented. Indicated strains were shifted to media ± IPTG, and samples were subjected to immunoblotting.
(D) Morphology of cells following ClpX depletion in socB+ and ΔsocB backgrounds is shown. Strains from (C) were imaged by DIC microscopy at 10 hr.
(E) Viability of cells following ClpX depletion in socB+ and ΔsocB backgrounds is presented. cfu/ml of the strains from (C) are shown; mean of two biological replicates is represented.
(F) Growth of strains expressing socB in the socA+ or ΔsocA backgrounds is presented. The indicated strains were 5-fold serially diluted onto media that induce or repress socB.
(G) Morphology of strains from (F) is presented. The indicated strains were grown for 4 hr in socB-inducing conditions and then imaged by DIC microscopy.
(H) Bacterial two-hybrid analysis of the interaction between SocA and SocB is shown. T18/T25 were included as a negative control; red indicates a positive interaction. Cells were grown for 1 day at 30°C.
See also Figure S1.

unstable and constitutively degraded by the protease ClpXP. In contrast to canonical TA systems, in which the antitoxin neutralizes its toxin by sequestration, we find that the antitoxin SocA neutralizes SocB by acting as an adaptor for the degradation of SocB by ClpXP. The requirement of ClpXP for SocB degradation explains why clpP is essential for viability in Caulobacter. Additionally, we provide evidence that SocB inhibits replication elongation through a direct interaction with DnaN. Mutations in DnaN or SocB that block their association occur in the hydrophobic cleft in DnaN or in a DnaN-binding motif in SocB, suggesting that SocB binds to DnaN in a similar manner as known clamp-binding proteins and competes for binding to DnaN during replication. In sum, our work elucidates mechanisms employed by TA systems to regulate toxin function and to inhibit cellular proliferation. Our results further suggest that protein interaction hubs such as DnaN may be ideal targets for the development of protein- or small molecule-based antimicrobials.

RESULTS

Mutations in the Toxin-Encoding Gene socB Can Bypass the Essentiality of clpXP
ClpXP is a widely conserved AAA+ protease that uses the power of ATP hydrolysis to unfold and proteolyze substrates within cells (Sauer and Baker, 2011). ClpXP is comprised of two proteins: the unfoldase ClpX, which recognizes and unfolds substrates; and the peptidase ClpP, which degrades the unfolded substrates that it receives from ClpX. Unlike most bacteria, clpX and clpP are essential for viability in Caulobacter (Jenal and Fuchs, 1998). To identify factors responsible for clpP essentiality, we selected for transposon insertions that allow cells to grow in the absence of clpP expression. We identified multiple transposon insertions in a hypothetical gene (CCNA_03629) that we named socB for suppressor of clpXP (Figure 1A). A clean deletion of socB allowed cells to grow in the absence of either clpX or clpP expression (Figure 1B); however, growth was slower on...
medium that repressed clpX or clpP, consistent with the fact that ClpXP degrades a range of cellular proteins (Bhat et al., 2013).

To better assess the ability of socB mutants to suppress clpX essentiality, we used a clpX depletion strain and performed a time course experiment following the switch to noninducing medium. Using immunoblotting, we found that ClpX gradually declined to almost undetectable levels after 10 hr (Figure 1C) (Jenal and Fuchs, 1998). In socB+ cells, the depletion of ClpX coincided with an increase in cellular filamentation (Figure 1D) and a more than 1,000-fold decrease in colony-forming units (cfu) (Figure 1E). However, in cells lacking socB, we observed only intermediate filamentation and no drop in cfu (Figures 1D and 1E). These data support the conclusion that a socB deletion bypasses the essentiality of clpX.

socB is present in an operon with an upstream gene, socA, that is predicted to be essential (Figure 1A) (Christen et al., 2011). This observation raised the possibility that socAB may encode a TA system. To test this hypothesis, we placed the putative toxin socB under an inducible promoter and tested whether its expression was toxic to cells in the presence or absence of its putative antitoxin socA. We found that inducing socB in socA+ cells had no significant effect on cell viability or morphology (Figures 1F and 1G). However, inducing socB in ΔsocA cells inhibited colony formation and led to cellular filamentation (Figures 1F and 1G). These phenotypes could be rescued by expressing socA in trans from a plasmid behind a different inducible promoter. Furthermore, time course experiments revealed an approximately 10-fold decrease in viability in cells expressing socB for 5 hr in the absence of socA (see Figures S1A and S1B available online). Collectively, our data indicate that socAB behaves genetically like other TA systems.

For type II TA systems, the antitoxin functions by forming a complex with its cognate toxin and neutralizing its activity (Yamaguchi et al., 2011). To test whether SocA and SocB directly interact, we used the bacterial two-hybrid system based on complementation of the T18 and T25 fragments of adenylate cyclase (Karimova et al., 1998). We fused socA and socB to the T25 and T18 fragments, respectively, and coexpressed the gene fusions in E. coli. We observed a strong interaction between SocA and SocB, indicating that they likely form a complex (Figure 1H). Interestingly, socB expression did not kill E. coli, indicating that its toxicity may be phylogenetically restricted.

Indeed, homologs of socAB were identified only in the α-proteobacteria (Figure S1C).

SocA Promotes SocB Degradation by ClpXP

The observation that a deletion of socB can bypass the essentiality of clpX suggested that SocB may be a ClpXP substrate and that accumulation of SocB in the absence of ClpXP inhibits growth. To test this possibility, we measured the accumulation of an M2-tagged variant of SocB in the presence or absence of ClpX. Whereas no M2-SocB was detected in the presence of ClpX, M2-SocB accumulation was observed when ClpX was first depleted for 12 hr (Figure 2A). To confirm that the decreased abundance of SocB in the presence of ClpX results from a change in protein stability, we produced M2-SocB from a chloramphenicol shutoff assay. We found that
the presence of ClpX reduced the half-life of M2-SocB from >60 min to ~15 min, indicating that SocB is likely a ClpXP substrate (Figures 2B and S2A).

Based on these results, we reasoned that SocB is normally present at low levels due to constitutive degradation by ClpXP. What role, then, does SocA play in the neutralization of SocB? Antitoxins of TA systems typically neutralize their cognate toxins by forming a stable complex (Yamaguchi et al., 2011). However, given that SocB is normally unstable, SocA may instead neutralize SocB by promoting its degradation. Indeed, we observed that M2-SocB accumulated in a strain lacking socA, but not in a socA+ strain (Figure 2C). To test whether SocA affects the stability of SocB, we measured the half-life of M2-SocB with and without socA expression from a low-copy plasmid. We found that SocA reduced the half-life of M2-SocB from ~19 to ~2 min, indicating that SocA promotes the degradation of SocB (Figures 2D and S2B). The half-life of M2-SocB in the presence of SocA (~2 min) was shorter than that measured above (~15 min), presumably due to differences in socA expression from a low-copy plasmid compared to its native chromosomal locus.

We hypothesized that SocA may be an adaptor for SocB degradation by ClpXP. Canonical adaptors, such as SspB, tether their substrates to the N domain of ClpX. This tethering increases substrate concentration around the ClpX pore, which concomitantly increases the rate of substrate degradation (Dougan et al., 2003; Levchenko et al., 2000). To test whether SocA is a proteolytic adaptor, we purified SocA and SocB and performed an in vitro degradation reaction with ClpXP. When SocB was combined with ClpXP alone, no degradation was observed (Figure 2E). However, when an equimolar amount of SocA was added to the reaction, we observed robust degradation of SocB, indicating that SocA promotes the degradation of SocB by ClpXP (Figure 2E).

We performed the same reaction with a variant of ClpX that lacks the N domain (residues 1–62) and, consequently, is catalytically active but deficient in adaptor-mediated degradation (Dougan et al., 2003). We observed no detectable degradation of SocB in the presence of SocA, ΔN-ClpX, and ClpP, indicating that the N domain of ClpX is required for SocA to promote SocB proteolysis (Figure 2E). Furthermore, we observed a direct interaction between the ClpX N domain and SocA (Figure S2C) and found that mutations in the ClpX N domain that abolish the interaction between ClpX and SocA prevent SocA from functioning as an antitoxin in vivo (Figure S2D). Collectively, these data indicate that SocA is an adaptor for the degradation of SocB by ClpXP, and they explain why clpXP and socA are essential for viability in Caulobacter.

Accumulation of SocB Blocks Replication Elongation

Why is the accumulation of SocB toxic to Caulobacter cells? To better study SocB function, we sought to develop a stabilized variant that is toxic even in the presence of SocA and ClpXP. Because ClpX often recognizes the free C terminus of its substrates (Flynn et al., 2003), we tested the effect of appending an M2 tag to SocB. We found that SocB-M2 was stabilized over 40-fold relative to M2-SocB (Figure S3A) and was toxic to socA+ clpXP+ cells (Figure S3B). This stabilized variant was subsequently used to assess the effects of SocB on cellular physiology.

Toxins of TA systems target a diverse range of targets within bacterial cells (Yamaguchi et al., 2011). Two observations suggested that SocB inhibits DNA replication at the level of elongation. First, induction of socB-M2 caused cellular filamentation without chromosome accumulation, which may indicate that growth continues while replication elongation is blocked (Figure S3C). Second, global expression profiling indicated that socB-M2 expression induced the SOS response (Figure 3A). The SOS response is often induced in response to replication perturbations, such as DNA damage, that disrupt replication fork progression (Little and Mount, 1982). To directly test whether replication elongation is inhibited by SocB, we measured DNA content in synchronized populations of cells harboring an inducible copy of socB-M2. In noninducing conditions, DNA content increased linearly as a function of time post-synchrony (Figure 3B). In contrast, the induction of socB-M2 caused a decrease in the rate of replication elongation, and cells eventually arrested with a DNA content between 1 and 2 N (Figure 3B). Because the completion of DNA replication is required for cell division, these cells also failed to divide (data not shown). These results indicate that SocB inhibits replication primarily at the level of elongation.

SocB Blocks Replication through an Interaction with DnaN

To identify the putative target of SocB, we screened for mutants that can tolerate high levels of socB-M2 expression. The first suppressors recovered were mutations in clpX that destabilized SocB-M2 (Figure S3D). The largest group of these mutations clustered near the RKH loop, which protrudes from the ClpX pore and is important for the recognition of SsrA-tagged substrates (Farrell et al., 2007; Martin et al., 2008). Additional mutations were found at sites distant from the ClpX pore: Y76 and P326, for example, are proximal to the ATP-binding site and roughly 40 Å away from the nearest RKH loop. In each tested case, the mutations resulted in an approximate 10-fold reduction in SocB-M2 stability (Figure S3E).

To identify suppressors outside of clpX, we continued our screen but focused on isolates that retained high levels of SocB-M2 and that did not harbor mutations in clpX. For two mutants, whole-genome sequencing revealed point mutations in dnaN, which encodes the β-s sliding clamp required for the processivity of DNA replication (Johnson and O’Donnell, 2005). Both mutations led to substitutions in glycine-179 of DnaN: G179C and G179R. We introduced these dnaN mutations into a clean genetic background and found that each was sufficient to bypass the replication block and growth inhibition normally observed following socB-M2 expression (Figures 3C and 3D). Furthermore, these mutations were able to partially suppress the filamentation observed following SocB-M2 accumulation (Figure S3F).

Glycine-179 resides within the hydrophobic groove on DnaN that is required for binding to Pol III and other replication proteins (Figure 3E) (Georgescu et al., 2008). The identification of suppressor mutations affecting this residue of DnaN raised the possibility that SocB blocks replication through a direct interaction with DnaN. To test this possibility, we purified SocB-GST and
DnaN and measured their binding by affinity chromatography in vitro. Production of SocB-GST is toxic to Caulobacter, indicating that this fusion protein is functional (Figure S3G). We observed a strong interaction between DnaN and SocB-GST, but no interaction when DnaN was incubated with GST alone (Figure 3F). Importantly, the suppressor mutations in DnaN, G179C and G179R, each disrupted the interaction with SocB-GST (Figure 3F). We obtained similar results using a bacterial two-hybrid system, confirming that DnaN and SocB can directly interact (Figure S3H).

The suppressor mutations isolated in DnaN reside within a hydrophobic groove required for its interaction with DnaN-binding proteins such as HdaA (Jonas et al., 2011), which must bind DnaA to regulate replication initiation (Kato and Katayama, 2001). To determine whether these mutations disrupt the interaction of DnaN with HdaA, we repeated our interaction assay and found that DnaN(G179C) retained the ability to interact with HdaA, whereas the G179R mutant did not (Figure S3H). Consistent with these binding data, cells producing DnaN(G179C) appeared similar to wild-type in the absence of socB expression, suggesting that the mutant version of DnaN supported wild-type-like growth. In contrast, cells producing DnaN(G179R) were often filamentous (Figure S3F), indicating that the interaction between DnaN and other proteins such as HdaA may be compromised. Taken together, our results support a model in which SocB blocks replication elongation through an interaction with DnaN and that mutations in the hydrophobic cleft on DnaN can abrogate binding of SocB.

Figure 3. SocB Blocks Replication Elongation through an Interaction with DnaN
(A) Analysis of gene expression changes following exposure to the DNA-damaging agent mitomycin C for 30 min (SOS response, top row) or following socB-M2 expression for 2 hr (+SocB-M2, bottom row) is presented. For each treatment, the genes induced or repressed more than 2-fold following mitomycin C treatment are shown.

(B) Flow cytometry of DNA content from synchronized cells grown ± socB-M2 expression is presented. For the +SocB-M2 condition, socB-M2 was induced for 90 min prior to synchrony and release. Quantification of DNA content is shown on the right.

(C) Same as (B), except performed with the dnaN(G179C) strain.

(D) Growth of indicated strains on socB-M2-inducing or -repressing medium is presented. Five-fold serial dilutions are shown.

(E) Structure of the E. coli sliding clamp in complex with a peptide derived from Pol III (Protein Data Bank 3D1F) is shown. Pol III peptide is in red, and the E. coli residue that corresponds to G179 in Caulobacter is colored in green.

(F) Interaction between SocB-GST and DnaN is presented. For each condition, the indicated proteins were mixed with glutathione Sepharose beads, washed, eluted, and then examined by SDS-PAGE. SocB-GST protein is unstable; asterisks indicate truncated SocB-GST products that retain GST tag. See also Figure S3.
During DNA replication, DnaN accumulates dynamically behind the lagging strand polymerase as a result of discontinuous DNA replication; consequently, YFP-tagged DnaN typically forms a discrete focus within cells during replication (Su’etsugu and Errington, 2011). Additionally, in Caulobacter, DnaN translocates along the major axis of the cell during replication (Collier and Shapiro, 2009). To determine whether DnaN dynamics (and by proxy, ongoing replication) are affected by SocB, we imaged YFP-tagged DnaN in a strain harboring an inducible copy of socB-M2. In the absence of socB-M2 expression, G1-phased cells typically showed diffuse DnaN-YFP followed by formation of a single focus after the initiation of DNA replication (Figure 4A). The focus moved along the major axis of the cell until its dispersal at the end of replication (Figure 4B). In the presence of socB-M2 expression, we also observed formation of a single DnaN-YFP focus following initiation, but the focus often dispersed much earlier (Figures 4C and 4D). In cells that lost their DnaN-YFP focus earlier, transient focus formation was sometimes observed following initial focus loss (Figures 4C and 4D), although these foci often lasted only a single frame and appeared at varying points along the cell axis.
To quantify these effects, we measured the time from focus formation to dispersal (τfocus), which reflects how long Pol III is engaged in replication before disengaging (either as a result of replication completion or premature termination). We found that the average focus duration, τfocus, dropped from 89 to 61 min in the presence of socB-M2 expression (Figure 4E, p < 10⁻⁴). Multiple observations indicated that the decrease in τfocus represented fork collapse prior to the completion of replication. First, measurements of τfocus in the absence of socB-M2 expression indicated that replication takes, on average, 89 min to complete and that no cells finish prior to 40 min postinitiation (Figure 4F); in the presence of DnaN(YFP), we no longer observed a significant decrease in the percentage of cells with DnaN(YFP) foci as a function of time post-socB-YFP induction (Figure 5C, p = 0.23). Furthermore, fewer than 0.3% of cells exhibited colocalization between DnaN(G179C)-YFP and SocB-YFP at any of the measured time points, in contrast to the 24% of cells that exhibit colocalization between DnaN-mCherry and SocB-YFP at 3 hr postinduction (Figure 5C). These results are consistent with a model in which SocB forms foci through its association with DnaN during active replication.

SocB Colocalizes with DnaN in a Replication-Dependent Manner

The interaction between SocB and DnaN suggested that SocB may localize to the replisome. To examine the subcellular localization of SocB, we integrated an inducible socB-YFP fusion on the chromosome and imaged cells by fluorescence microscopy. Expression of socB-YFP inhibited colony formation, indicating that this translational fusion is functional (Figure S4A). After inducing socB-YFP for 3 hr, we observed the formation of SocB-YFP foci in a majority of cells (Figure 5A). The formation of these foci was dependent on the ability of SocB to bind DnaN because foci were rarely seen in cells producing DnaN(G179C) or DnaN(G179R) (Figure 5A). SocB foci were also dependent on ongoing replication because we saw a significant decrease in foci formation in cells depleted of DnaA, the replication initiator protein (Figure 5B).

To test whether SocB and DnaN colocalize during replication, we fused dnaN to mCherry at the native chromosomal dnaN locus. We then integrated an inducible copy of socB-YFP on the chromosome and imaged cells by fluorescence microscopy at hour-long intervals post-socB-YFP induction. Using an automated image analysis pipeline (Figures S4B and S4C; Supplemental Experimental Procedures), we calculated the percentage of cells that have DnaN-mCherry foci, and of these cells, the percentage that also have colocalized SocB-YFP foci. As expected, we observed a decrease in the percentage of cells with DnaN-mCherry foci as a function of time post-socB-YFP induction (Figure 5C, p = 3 × 10⁻³). The percentage of cells with DnaN-mCherry foci did not decrease to zero, presumably due to cells attempting to restart replication following initial fork collapse (Figure 4C). Although the percentage of cells with DnaN-mCherry foci decreased over time, the percentage of cells with colocalized DnaN-mCherry and SocB-YFP increased significantly (Figure 5C). Most colocalization-positive cells had colocalized foci at a single point along the cell axis (Figure 5D). In a minority of cells, multiple colocalized foci could be observed, which may occur when the left- and right-arm replisomes are no longer overlapping (Figure 5E).

To test whether these localization effects were dependent on a direct interaction between SocB and DnaN, we repeated these microscopy experiments in a strain with dnaN(G179C)-mCherry integrated at its native chromosomal locus. In contrast to the dnaN-mCherry strain, we observed no significant decrease in the percentage of cells with DnaN(G179C)-mCherry foci as a function of time post-socB-YFP induction (Figure 5C, p = 0.23). Furthermore, fewer than 0.3% of cells exhibited colocalization between DnaN(G179C)-mCherry and SocB-YFP at any of the measured time points, in contrast to the 24% of cells that exhibit colocalization between DnaN-mCherry and SocB-YFP at 3 hr postinduction (Figure 5C). These results are consistent with a model in which SocB forms foci through its association with DnaN during active replication.

SocB Interacts with DnaN through a DnaN-Binding Motif

In γ-proteobacteria, DnaN-binding proteins such as Hda and DnaE often contain a shared motif (QL[SD]LF) for binding the β sliding clamp. Examination of HdaA (the Caulobacter ortholog of Hda) and DnaE orthologs from γ-proteobacteria revealed a similar, putative DnaN-binding motif (Figure 6A). SocB contained a short region similar to the DnaN-binding motif found in HdaA orthologs (Figure 6B). To test whether this region is required for the interaction of SocB with DnaN, we generated a Q52A mutant of socB-YFP. Mutation of this conserved glutamine in HdaA is sufficient to abolish its interaction with DnaN (Jonas et al., 2011). We found that this mutation abolished the toxicity of socB-YFP expression (Figure 6C), the formation of SocB-YFP foci (Figure 6D), and also the interaction between SocB and DnaN (Figures 6E and S5). Importantly, this mutation did not affect the ability of SocB to interact with SocA, indicating that SocB(Q52A) is likely properly folded (Figure S5). These results support a model in which SocB inhibits replication by binding to DnaN using a motif similar to that of HdaA.

DISCUSSION

Essentiality of clpXP and SocA Mechanism of Action

Unlike most bacteria, clpXP is essential for the viability of Caulobacter cells (Jenal and Fuchs, 1998); however, the reason for this essentiality was not clear until now. Our work reveals that
ClpXP is required for the degradation of a toxin, SocB, that is constitutively produced in cells (Figure 7, left). In the absence of ClpXP or SocA, SocB accumulates, leading to the collapse of replication forks, induction of the SOS response, and eventual cell death (Figure 7, right). Consequently, mutations in socB can bypass the essentiality of clpX or clpP (Figure 1B). We note, however, that cells lacking socB and either clpX or clpP do not grow as rapidly as wild-type, likely due to defects in the turnover of other ClpXP substrates such as the cell-cycle regulator CtrA (Bhat et al., 2013).

The rapid turnover of SocB is unusual, given that for most TA systems, the toxin is more stable than its cognate antitoxin. The reduced stability of SocB stems from the atypical mechanism of its antitoxin, SocA. Whereas most antitoxins inhibit their cognate toxins through sequestration, SocA is instead an adaptor for the degradation of SocB by ClpXP. SocA binds both SocB (Figure 1H) and the N domain of ClpX (Figure S2C) and thereby promotes the degradation of SocB in vivo and in vitro (Figures 2D and 2E). SocA binding to the N domain appears to be essential for this activity because SocA was unable to promote SocB proteolysis when the N domain was truncated from ClpX (Figure 2E). The observation that SocA decreases SocB stability does not rule out that SocA also blocks SocB toxicity through sequestration. However, multiple results argue against this role for SocA: (1) targeted mutations in the N domain of ClpX that abolish SocA binding also prevent SocA from functioning as an antitoxin in vivo (Figures S2C and S2D); and (2) production of the stable SocB-M2 variant in socA+ cells is lethal, even though SocB-M2 and SocA can still form a complex (Figure S3B; data not shown). Thus, we propose that the antitoxin activity of SocA results principally from its ability to promote SocB proteolysis through ClpXP, which makes SocA necessary, but not sufficient, for counteracting SocB toxicity.

In many bacteria, ClpXP is not formally essential for viability, although it is often required for other critical processes. In E. coli, deletions of clpX or clpP have no significant effect on viability or growth rate (Schweder et al., 1996), but ClpXP contributes to the proteolysis of a range of cellular substrates (Flynn

Figure 5. SocB Forms Foci that Colocalize with DnaN

(A) Fluorescence microscopy of indicated strains at 3 hr post-socB-YFP induction is presented. Percentage of cells containing SocB-YFP foci is shown on the right. Errors bars indicate mean ± SD for three biological replicates (n > 400 cells per replicate).

(B) Fluorescence microscopy of Plac-dnaA cells grown in the presence or absence of IPTG for 2 hr prior to socB-YFP induction for 3 hr is shown. Percentage of cells containing SocB-YFP foci is calculated as in (A). Errors bars indicate mean ± SD for three biological replicates (n > 400 cells per replicate).

(C) Percentage of cells with DnaN-mCherry foci as a function of time post-socB-YFP induction is presented. The percentage of total cells with colocalized (white) or not colocalized (gray) DnaN-mCherry and SocB-YFP foci is shown within each bar. Error bars indicate mean ± SD for three biological replicates (n > 500 cells per replicate).

(D) Colocalization of DnaN-mCherry foci (hollow arrowheads) and SocB-YFP foci (filled arrowheads) after induction of socB-YFP for 3 hr is shown.

(E) Colocalization of multiple DnaN-mCherry and SocB-YFP foci in a single cell is presented. Fluorescence profile for DnaN-mCherry (top inset, gray hollow circles) and SocB-YFP (bottom inset, black filled circles) is shown.

See also Figure S4.
et al., 2003). In B. subtilis, clpX and clpP deletions are viable but have major defects in sporulation and competence (Nakano et al., 2001). These defects are mostly due to accumulation of a transcriptional regulator, Spx, that is normally degraded by ClpXP. ClpX or ClpP has, however, been found to be essential in several bacteria, including the pathogens Mycobacterium tuberculosis and Streptococcus pneumoniae (Piotrowski et al., 2009; Raju et al., 2012). The essentiality of clpX can be bypassed in Streptococcus by mutations in an uncharacterized gene, spr1630, suggesting that this gene product may accumulate in the absence of ClpXP and inhibit growth, similar to SocB. Characterization of the gene products that bypass ClpXP essentiality may reveal regulators of cell growth or physiology.

Mechanism of SocB Inhibition of Replication Elongation

Our results indicate that upon accumulating, SocB blocks replication elongation and triggers an SOS response (Figure 3). Multiple observations suggest that SocB mediates these effects through a direct interaction with DnaN: (1) SocB and DnaN interact in vitro and in a bacterial two-hybrid assay (Figures 3F and S3H); (2) mutations in DnaN that abolish its interaction with SocB also bypass the SocB-induced replication block (Figures 3C, 3F, and S3H); (3) SocB and DnaN colocalize, and this colocalization is dependent on the ability of SocB and DnaN to interact (Figure 5); and (4) SocB contains a DnaN-binding motif that is required for its interaction with DnaN and toxicity (Figure 6). In sum, these results are consistent with a model in which SocB binds to DnaN and that this association leads to catastrophic replication fork collapse (Figure 4).

How, then, does the interaction between SocB and DnaN lead to the premature termination of replication? The simplest model is that SocB competes with Pol III for binding to DnaN, potentially disrupting both lagging and leading strand synthesis. During lagging strand replication, the polymerase extends discontinuously and presumably must associate with a new clamp to produce each Okazaki fragment (Johnson and O’Donnell, 2005). Disruption of the Pol III-DnaN interaction could rapidly inhibit production of new Okazaki fragments and consequently block synthesis of the lagging strand. In contrast, during leading strand replication, the polymerase can extend continuously and may not need to load new clamps following initiation. However, depending on the stability of the Pol III-DnaN interaction, SocB may still be able to compete for binding to DnaN on the leading strand if Pol III and DnaN ever transiently dissociate, such as upon encountering a DNA lesion. Additionally, blocking synthesis on the lagging strand would also indirectly inhibit synthesis on the leading strand, given that the leading and lagging strand polymerases are physically tethered by the γ clamp loader complex. Such stalling of replication could eventually lead the replisome to disassemble.

Notably, the effects of SocB on DNA replication are not immediate; replication first slows down approximately 120 min postinduction (Figure 3B, note the 90 min preinduction prior to time zero). This timing coincides with the first observable decrease in viability (Figure S1B) and an increase in the colocalization of SocB with DnaN (Figure 5C) but is later than may be expected if SocB immediately outcompetes Pol III for binding to DnaN. The delay may simply reflect a need for SocB to accumulate to sufficient levels before outcompeting Pol III and other DnaN-binding proteins. Alternatively, SocB may only disrupt new associations of DnaN and Pol III such that replication can initially continue following the accumulation of SocB by using DnaN molecules already in association with Pol III.

An additional question is why SocB, despite the presence of a DnaN-binding motif, is not toxic to E. coli, which has a similar hydrophobic pocket on DnaN (Figure 1H; data not shown). It is possible that SocB makes contacts with DnaN at a secondary site that is less well conserved between bacteria. Interestingly, a cocrystal structure of DnaN and the little finger domain of DNA Pol IV, a DnaN-interacting protein, revealed the presence of a secondary binding interface outside of the hydrophobic pocket (Bunting et al., 2003). The secondary interface comprised...
Figure 7. Model for SocAB Function

Under normal growth conditions, the toxin SocB is delivered to ClpXP for degradation by its antitoxin SocA. Pol III thus remains in association with the clamp, and replication proceeds normally (left). However, in the absence of either ClpXP or SocA, SocB accumulates and competes for binding to the clamp with Pol III and other replication factors. This competition eventually results in the collapse of replication forks and induction of the RecA-mediated SOS response (right).

over 70% of the buried surface area, indicating that it likely contributes significantly to the affinity of interaction. The requirement of a secondary binding interface may explain why appending a DnaN-binding motif to GFP only results in weak DnaN-dependent foci formation in B. subtilis (Suetsugu and Errington, 2011).

Given the ability of SocB to inhibit replication progression, an important remaining question is when SocB normally accumulates in wild-type cells. Genetically, we revealed that a loss of either ClpXP or SocA, SocB accumulates and competes for binding to the clamp with Pol III and other replication factors. This competition eventually results in the collapse of replication forks and induction of the RecA-mediated SOS response (right).

suggesting that SocB may disrupt several cellular processes required for growth and genome maintenance.

Interaction hubs such as DnaN may be ideal targets for antibiotic development because they coordinate multiple cellular processes and may be unable to mutate to prevent small molecule binding without significantly compromising their native functions. The ability of a protein toxin like SocB to arrest DNA replication and kill cells suggests that the hydrophobic cleft on DnaN may be a prime target for small molecule inhibitors. In fact, the small molecule RU-7 was recently shown to bind within this hydrophobic cleft on the clamp and to prevent its association with Pol I in vitro (Georgescu et al., 2008). This interaction was specific for the bacterial sliding clamp because the interaction between the eukaryotic PCNA clamp and Pol I was unaffected. A separate screen for inhibitors of an in vitro bacterial replication system identified six compounds that share the same core structure as RU-7, suggesting that they also function through binding to the clamp (Dallmann et al., 2010). The recent rise in multidrug-resistant strains of various pathogenic bacteria highlights the continued need to develop antibiotics to combat these infections. The study of bacterially encoded toxins and the mechanisms by which they inhibit cellular proliferation may prove valuable in the identification of promising targets.

EXPERIMENTAL PROCEDURES

Bacterial Strains and Media

Caulobacter strains used in this study are listed in Table S1. For details on strain construction and growth conditions, see Supplemental Experimental Procedures.

Suppressor Screening and Mapping

Suppressors of a clpP depletion strain were obtained by EZ-Tn5 mutagenesis, and transposon insertion sites in surviving colonies were identified by rescue cloning of circularized DNA in pIR-116 E. coli. Suppressors of socB-M2 suppression were first screened for mutations in socB, clpX, and clpP; suppressors that contained no mutations in these genes were then subjected to whole-genome sequencing to identify point mutations. For details, see Supplemental Experimental Procedures.

Protein Purification and Degradation Assays

His6-SocA and His6-SocB were purified by Ni-NTA affinity chromatography, and for His6-SocA, by subsequent gel filtration chromatography (see Supplemental Experimental Procedures). ClpX, ΔN-ClpX, and ClpP were prepared as described previously by Chien et al. (2007). Degradation reactions were performed in PD-KCl-200 buffer at 4°C. Reaction conditions were as follows: 0.5 μM ClpX, 0.5 μM ΔN-ClpX, 1 μM ClpP, 5 μM SocB, 5 μM SocA, 32 μg/ml creatine kinase, 16 mM creatine phosphate, and 4 mM ATP.

Microscopy and Image Analysis

For details on image acquisition and processing, see Supplemental Experimental Procedures.

Microarrays

Expression data for cells exposed to the DNA-damaging agent mitomycin C were previously published by Model et al. (2011). Expression profiling of cells expressing socB-M2 was performed as described previously by Gora et al. (2010).

ACCESSION NUMBERS

The expression data for cells producing SocB-M2 have been deposited in ArrayExpress with accession number E-MEXP-3990.
A Bacterial Toxin Inhibits Replication Elongation

Raju, R.M., Unnikrishnan, M., Rubin, D.H., Krishnamoorthy, V., Kandror, O.,
tuberculosis ClpP1 and ClpP2 function together in protein degradation
and are required for viability in vitro and during infection. PLoS Pathog. 8,
e1002511.

Robinson, A., Brzoska, A.J., Turner, K.M., Withers, R., Harry, E.J., Lewis, P.J.,
and Dixon, N.E. (2010). Essential biological processes of an emerging path-
ogen: DNA replication, transcription, and cell division in Acinetobacter spp.

Robinson, A., Causer, R.J., and Dixon, N.E. (2012). Architecture and conserva-
tion of the bacterial DNA replication machinery, an underexploited drug target.

Escherichia coli starvation sigma factor (sigma s) by ClpX protease.

Su’etsugu, M., and Errington, J. (2011). The replicase sliding clamp dynami-
cally accumulates behind progressing replication forks in Bacillus subtilis cells.

Yamaguchi, Y., and Inouye, M. (2011). Regulation of growth and death in

(2010). Vibrio cholerae ParE2 poisons DNA gyrase via a mechanism distinct

MazF cleaves cellular mRNAs speciﬁcally at ACA to block protein synthesis in